Abstracts of papers (2010)

Last Update: 02/09/2011

Abstracts of papers (2010)

[2010-1] Igarashi, K., and Kashiwagi, K., Int. J. Biochem. Cell Biol. 42, 39-51 (2010)

Polyamines (putrescine, spermidine and spermine) are essential for normal cell growth. The polyamine levels in cells are regulated by biosynthesis, degradation, and transport. Polyamines can modulate the functions of DNA, nucleotide triphosphates, proteins, and especially RNA because most polyamines exist in a polyamine-RNA complex in cells. Thus, the major focus on this review is on the role of polyamines in protein synthesis. In addition, effects of polyamines on B to Z conversion of DNA, transcription, phosphorylation of proteins, cell cycle progression, apoptosis and ion channels, especially NMDA receptors, are outlined. The function of eIF5A is also briefly discussed. Finally, a correlation between acrolein, produced from polyamines by polyamine oxidases, and chronic renal failure or brain stroke is summarized. Increased levels of polyamine oxidases and acrolein are good markers of chronic renal failure and brain stroke.

[2010-2] Yoshida, M. et al., Biochem. Biophys. Res. Commun. 391, 1234-1239 (2010)

It is known that the level of protein-conjugated acrolein in plasma is a good marker of chronic renal failure and brain infarction. Thus, studies were carried out to determine which kinds of plasma proteins are conjugated with acrolein. It was found that acrolein was mainly conjugated with albumin. Tandem mass spectrometry analysis demonstrated that Lys-557 and Lys-560, located at the surface of domain III of albumin, were the major sites conjugated with acrolein. This is the first report to identify the amino acid residues in a protein modified by acrolein in vivo. It was found that conjugation of acrolein with albumin contributed to a decrease in the toxicity of acrolein.

[2010-3] Higashi, K. et al., Clin. Chim. Acta 411, 359-363 (2010)

Background: We recently found that an increased plasma concentration of protein-conjugated acrolein is a good biomarker for stroke. Therefore we determine whether the concentration of protein-conjugated acrolein is increased in saliva from patients with primary Sjögren's syndrome.
Methods: Stimulated whole-mixed saliva was collected from 10 patients and 13 control subjects. The concentration of protein-conjugated acrolein in saliva and plasma was measured by either Western blotting or enzyme-linked immunosorbent assay.
Results: The concentration of protein-conjugated acrolein, especially albumin-conjugated acrolein, was greatly increased in saliva from patients with primary Sjögren's syndrome (p < 0.001). The concentration of protein-conjugated acrolein was inversely correlated with the flow rate of saliva.
Conclusion: The results indicate that the concentration of protein-conjugated acrolein, a marker of cell or tissue damage, in saliva is well correlated with seriousness of primary Sjögren's syndrome.

[2010-4] Shiokawa, K. et al., Amino Acids 38, 439-449 (2010)

We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

[2010-5] Park, M. H. et al., Amino Acids 38, 491-500 (2010)

The unusual basic amino acid, hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)-lysine], is a modified lysine with the addition of the 4-aminobutyl moiety from the polyamine spermidine. This naturally occurring amino acid is a product of a unique posttranslational modification that occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF5A, eIF-5A). Hypusine is synthesized exclusively in this protein by two sequential enzymatic steps involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The deoxyhypusine/hypusine synthetic pathway has evolved in archaea and eukaryotes, and eIF5A, DHS and DOHH are highly conserved suggesting a vital cellular function of eIF5A. Gene disruption and mutation studies in yeast and higher eukaryotes have provided valuable information on the essential nature of eIF5A and the deoxyhypusine/hypusine modification in cell growth and in protein synthesis. In view of the extraordinary specificity and functional significance of hypusine-containing eIF5A in mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes are novel potential targets for intervention in aberrant cell proliferation.

[2010-6] Igarashi, K. and Kashiwagi, K., Plant. Physiol. Biochem. 48, 506-512 (2010)

Polyamine content in cells is regulated by biosynthesis, degradation and transport. In Escherichia coli, there are two polyamine uptake systems, namely spermidine-preferential (PotABCD) and putrescine-specific (PotFGHI), which belong to the family of ATP binding cassette transporters. Putrescine-ornithine and cadaverine-lysine antiporters, PotE and CadB, each consisting of 12 transmembrane segments, are important for cell growth at acidic pH. Spermidine excretion protein (MdtJI) was also recently identified. When putrescine was used as energy source, PuuP functioned as a putrescine transporter. In Saccharomyces cerevisiae, there are four kinds of polyamine uptake proteins (DUR3, SAM3, GAP1 and AGP2), consisting of either 12 or 16 transmembrane segments. Among them, DUR3 and SAM3 mostly contribute to polyamine uptake. There are also five kinds of polyamine excretion proteins (TPO1-5), consisting of 12 transmembrane segments. Among them, TPO1 and TPO5 are the most active proteins. Since a polyamine metabolizing enzyme, spermidine/spermine N1-acetyltransferase, is not present in yeast, five kinds of excretion proteins may exist. The current status of polyamine transport in mammalian and plant cells are reviewed.

[2010-7] Togashi, M. et al., Org. Lett. 12, 1704-1707 (2010)

A novel lanthanide probe was designed, synthesized, and employed for a sensitive and reliable assay of acrolein based on time-resolved luminescence measurement, which suppresses the background signal of serum.

[2010-8] Yoshida, M. et al., Atherosclerosis 211, 475-479 (2010)

Objective: We found previously that the measurement of plasma levels of protein-conjugated acrolein (PC-Acro) together with IL-6 and CRP can be used to identify silent brain infarction (SBI) with high sensitivity and specificity. The aim of this study was to clarify how three biochemical markers are correlated to SBI, carotid atherosclerosis (CA) and white matter hyperintensity (WMH).
Methods: The levels of PC-Acro, IL-6 and CRP in plasma were measured by ELISA. SBI and WMH were evaluated by MRI, and CA was evaluated by duplex carotid ultrasonography.
Results: A total of 790 apparently healthy volunteers were classified into 260 control, 214 SBI, 263 CA and 245 WMH subjects, which included 187 subjects with two or three pathologies. When the combined measurements of PC-Acro, IL-6 and CRP were evaluated together with age, using a receiver operating characteristic curve and artificial neural networks, the relative risk value (RRV), an indicator of tissue damage, was in the order SBI with CA (0.90)>SBI (0.80)>CA (0.76)>WMH with CA (0.65)>WMH (0.46)>control (0.14). RRV was also correlated with severity in each group of SBI, CA and WMH.
Conclusion: The RRV supports the idea that the degree of risk to develop a stroke is in the order SBI>CA>WMH.

[2010-9] Kakehi, J.-I. et al., FEBS Lett. 584, 3042-3046 (2010)

Thermospermine is a structural isomer of spermine and is required for stem elongation in Arabidopsis thaliana. We noted the C3C3 arrangement of carbon chains in thermospermine (C3C3C4), which is not present in spermine (C3C4C3), and examined if it is functionally replaced with norspermine (C3C3C3) or not. Exogenous application of norspermine to acl5, a mutant defective in the synthesis of thermospermine, partially suppressed its dwarf phenotype, and down-regulated the level of the acl5 transcript which is much higher than that of the ACL5 transcript in the wild type. Furthermore, in the Zinnia culture, differentiation of mesophyll cells into tracheary elements was blocked by thermospermine and norspermine but not by spermine. Our results indicate that norspermine can functionally substitute for thermospermine.

[2010-10] Terui, Y. et al., J. Biol. Chem. 285, 28698-28707 (2010)

We searched for proteins whose synthesis is enhanced by polyamines at the stationary phase of cell growth using an Escherichia coli polyamine-requiring mutant in which cell viability is greatly decreased by polyamine deficiency. The synthesis of ribosome modulation factor (RMF) was strongly enhanced by polyamines at the level of translation at the stationary phase of cell growth. In rmf mRNA, a Shine-Dalgarno (SD) sequence is located 11 nucleotides upstream of the initiation codon AUG. When the SD sequence was moved to the more common position 8 nucleotides upstream of the initiation codon, the degree of polyamine stimulation was reduced, although the level of RMF synthesis was markedly increased. Polyamine stimulation of RMF synthesis was found to be caused by a selective structural change of the bulged-out region of the initiation site of rmf mRNA. The decrease in cell viability caused by polyamine deficiency was prevented by the addition of a modified rmf gene whose synthesis is not influenced by polyamines. The results indicate that polyamines enhance cell viability of E. coli at least in part by enhancing RMF synthesis.

[2010-11] Higashi, K. et al., J. Biol. Chem. 285, 39061-39069 (2010)

Amino acid residues on PotB and PotC involved in spermidine uptake were identified by random and site-directed mutagenesis. It was found that Trp8, Tyr43, Trp100, Leu110, and Tyr261 in PotB and Trp46, Asp108, Glu169, Ser196, Asp198, and Asp199 in PotC were strongly involved in spermidine uptake and that Tyr160, Glu172, and Leu274 in PotB and Tyr19, Tyr88, Tyr148, Glu160, Leu195, and Tyr211 in PotC were moderately involved in spermidine uptake. Among 11 amino acid residues that were strongly involved in spermidine uptake, Trp8 in PotB was important for insertion of PotB and PotC into membranes. Tyr43, Trp100, and Leu110 in PotB and Trp46, Asp108, Ser196, and Asp198 in PotC were found to be involved in the interaction with PotD. Leu110 and Tyr261 in PotB and Asp108, Asp198, and Asp199 in PotC were involved in the recognition of spermidine, and Trp100 and Tyr261 in PotB and Asp108, Glu169, and Asp198 in PotC were involved in ATPase activity of PotA. Accordingly, Trp100 in PotB was involved in both PotD recognition and ATPase activity, Leu110 in PotB was involved in both PotD and spermidine recognition, and Tyr261 in PotB was involved in both spermidine recognition and ATPase activity. Asp108 and Asp198 in PotC were involved in PotD and spermidine recognition as well as ATPase activity. These results suggest that spermidine passage from PotD to the cytoplasm is coupled to the ATPase activity of PotA through a structural change of PotA by its ATPase activity.